80 research outputs found

    Metastability in the dilute Ising model

    Full text link
    Consider Glauber dynamics for the Ising model on the hypercubic lattice with a positive magnetic field. Starting from the minus configuration, the system initially settles into a metastable state with negative magnetization. Slowly the system relaxes to a stable state with positive magnetization. Schonmann and Shlosman showed that in the two dimensional case the relaxation time is a simple function of the energy required to create a critical Wulff droplet. The dilute Ising model is obtained from the regular Ising model by deleting a fraction of the edges of the underlying graph. In this paper we show that even an arbitrarily small dilution can dramatically reduce the relaxation time. This is because of a catalyst effect---rare regions of high dilution speed up the transition from minus phase to plus phase.Comment: 49 page

    Stretched Polymers in Random Environment

    Full text link
    We survey recent results and open questions on the ballistic phase of stretched polymers in both annealed and quenched random environments.Comment: Dedicated to Erwin Bolthausen on the occasion of his 65th birthda

    Modeling the scaling properties of human mobility

    Full text link
    While the fat tailed jump size and the waiting time distributions characterizing individual human trajectories strongly suggest the relevance of the continuous time random walk (CTRW) models of human mobility, no one seriously believes that human traces are truly random. Given the importance of human mobility, from epidemic modeling to traffic prediction and urban planning, we need quantitative models that can account for the statistical characteristics of individual human trajectories. Here we use empirical data on human mobility, captured by mobile phone traces, to show that the predictions of the CTRW models are in systematic conflict with the empirical results. We introduce two principles that govern human trajectories, allowing us to build a statistically self-consistent microscopic model for individual human mobility. The model not only accounts for the empirically observed scaling laws but also allows us to analytically predict most of the pertinent scaling exponents

    Random walk with barriers: Diffusion restricted by permeable membranes

    Full text link
    Restrictions to molecular motion by barriers (membranes) are ubiquitous in biological tissues, porous media and composite materials. A major challenge is to characterize the microstructure of a material or an organism nondestructively using a bulk transport measurement. Here we demonstrate how the long-range structural correlations introduced by permeable membranes give rise to distinct features of transport. We consider Brownian motion restricted by randomly placed and oriented permeable membranes and focus on the disorder-averaged diffusion propagator using a scattering approach. The renormalization group solution reveals a scaling behavior of the diffusion coefficient for large times, with a characteristically slow inverse square root time dependence. The predicted time dependence of the diffusion coefficient agrees well with Monte Carlo simulations in two dimensions. Our results can be used to identify permeable membranes as restrictions to transport in disordered materials and in biological tissues, and to quantify their permeability and surface area.Comment: 8 pages, 3 figures; origin of dispersion clarified, refs adde

    A limit theorem for Birkhoff sums of non-intetrable functions over rotations

    No full text

    Renewal-type Limit Theorem for the Gauss map and continued fractions

    No full text

    Poisson Law for Axiom a System

    No full text
    corecore